Subspace embedding from Johnson-Lindenstrauss

Let π’°βŠ‚β„n\mathcal{U} \subset \mathbb{R}^n be a dd-dimensional linear subspace in ℝn\mathbb{R}^n. If πš·βˆˆβ„mΓ—d\mathbf{\Pi} \in \mathbb{R}^{m \times d} is chosen from any distribution π’Ÿ\mathcal{D} satisfying the Distributional JL Lemma, then with probability 1βˆ’Ξ΄1-\delta, (1βˆ’Ο΅)||𝐯||22≀||𝚷𝐯||22≀(1+Ο΅)||𝐯||22(1-\epsilon)||\mathbf{v}||_2^2 \leq ||\mathbf{\Pi v}||_2^2 \leq (1+\epsilon)||\mathbf{v}||_2^2 for all π―βˆˆπ’°\mathbf{v} \in \mathcal{U}, as long as m=O(dlog(1/Ο΅)+log(1/Ξ΄)Ο΅2)m=O \left(\frac{d\log(1/\epsilon)+\log(1/\delta)}{\epsilon^2} \right).1

Corollary

If we choose 𝚷\mathbf{\Pi} and properly scale, then with O(d/ϡ2)O(d/\epsilon^2) rows, #incomplete


  1. It’s possible to obtain a slightly tighter bound of O(d+log(1/Ξ΄)Ο΅2)O( \frac{d+\log(1/Ξ΄)}{Ο΅^2})β†©οΈŽ